
www.manaraa.com

Using XForms to Simplify Web Programming
Richard Cardone, Danny Soroker, Alpana Tiwari

IBM Watson Research Center
Hawthorne, NY 10532

{richcar, soroker, alpana} @ us.ibm.com

ABSTRACT
The difficulty of developing and deploying commercial web
applications increases as the number of technologies they use
increases and as the interactions between these technologies
become more complex. This paper describes a way to avoid this
increasing complexity by re-examining the basic requirements of
web applications. Our approach is to first separate client concerns
from server concerns, and then to reduce the interaction between
client and server to its most elemental: parameter passing. We
define a simplified programming model for form-based web
applications and we use XForms and a subset of J2EE as enabling
technologies. We describe our implementation of an MVC-based
application builder for this model, which automatically generates
the code needed to marshal input and output data between clients
and servers. This marshalling uses type checking and other forms
of validation on both clients and servers. We also show how our
programming model and application builder support the
customization of web applications for different execution targets,
including, for example, different client devices.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
modules and interfaces, object-oriented design methods. D.2.3
[Software Engineering]: Coding Tools and Techniques –
standards, object-oriented programming.

General Terms: Design, Standardization.

Keywords
Web application, visual builder, MVC, XForms, J2EE, Eclipse,
XMLBeans.

1. INTRODUCTION
Using the terminology of a former era, one could describe

web applications as client/server software that uses a universal
client. This universal client is the web browser and the various
standards that allow browsers to run on almost any computing
device. In particular, the HTML standard is a cornerstone of the
web. HTML 1.0 [5] provided basic document formatting and
hyperlinks for online browsing; HTML 2.0 [6] ushered in a more
dynamic, interactive web by defining forms to capture and submit
user input.

This march towards dynamic web content has improved the
web’s utility and the experience of web users, but it has also led to
more complexity in programming web applications. This
complexity arises from three main sources. First, dynamic web

pages are often generated on the fly, which makes application
code harder to understand and makes troubleshooting more
difficult because of the extra level of abstraction that one must
consider. The pitfalls here are similar to those found with
dynamically generated programs. Second, even when dynamic
web pages exist as a single source code artifact, they are often a
mixture of markup languages, client-side scripting code and
server-side function calls, which makes them nearly unreadable.
In addition, the skill set needed to comprehend such source code
is continuously expanding, which again makes maintenance
difficult. Third, the high number of software technologies used in
some web applications makes those applications complicated to
design and fragile to deploy and run. These technologies can
include JavaScript [13], JavaServer Pages with taglibs [14],
servlets [19], Struts [1], XSLT [28], DOM [28], SOAP [28], Web
Services [28], Enterprise JavaBeans [18], Service Data Objects
[18], etc., along with related protocols and configuration data.
The complexity and overhead of combining these technologies
can reduce performance and make runtime problems difficult to
isolate.

The work described in this paper is an effort to get back to
basics. We focus on form-based web applications, an important
class of applications that solicit user input through form interfaces
and then respond back to users with dynamic content. Specifi-
cally, we concentrate on the interaction between browsers and the
server software with which they directly interact. We recognize
three main requirements for this client/server interface: (1) to
provide a responsive user experience, (2) to efficiently pass input
and output data between browser and web server, and (3) to
accommodate a diverse set of client platforms. Our goal is to
meet these requirements while reducing the complexity of web
application programming.

This paper makes the following contributions:

• We introduce a programming model that simplifies the
design of form-based web applications by separating client-
side XML markup from server-side programming language
considerations.

• We show how to efficiently implement our programming
model by using an MVC-based application builder and by
automatically marshalling data between XML and Java.

• We provide a general-purpose approach to the multi-
targeting of applications, in which multiple specializations of
an application are developed in parallel.

• We describe our prototype application builder that tests our
ideas and that includes visual editors, a code generator and a
runtime library.

Our solution, HopiXForms (HX), begins with the use of
browsers that support an XForms processor. An XForms
processor is essentially a virtual machine that interprets a well-

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to
classroom use, and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

215

www.manaraa.com

defined, declarative specification language for forms. The
XForms markup language [11] minimizes the need for client-side
scripting by allowing dynamic form data and events to be handled
declaratively. This language is designed to be embedded in other
XML languages, like XHTML. In fact, XForms 1.0 is an integral
part of the XHTML 2.0 draft specification [2]. XForms
processors are available for Internet Explorer, Mozilla, and for
some PDA and mobile phone browsers [9][28].1

The use of XForms allows us to separate the data
representation used on the client from the representation used on
the server. In an XForms page, form data is represented as XML.
On the server side, form data is represented in programming
language structures native to the server program, which is
convenient for server programmers. For example, form data is
represented using JavaBeans on J2EE servers, which are the
servers that we use in our implementation. A key feature of our
approach is that page designers manage form data declaratively
and server programmers manage form data imperatively, and
neither group is required to manipulate the other group’s
representation. This separation is possible because our system
automatically marshals form data between client and server
representations.

Our solution also includes a Model-View-Controller (MVC)
application builder that further separates concerns. Visual editors
are used to specify an application’s control flow separately from
its page definitions. Our builder interprets the application control
flow graph and generates the J2EE configuration that determines
the transition between pages at runtime. In addition, since control
flow and page definitions are separate, developers can use our
development environment to customize both pages and applica-
tion flow for different runtime environments.

This paper proceeds as follows. Section 2 provides the
context for our approach with regard to other web technologies.
Section 3 describes the design choices of our MVC application
builder. Section 4 shows how we support the customization of an
application for execution in different client environments. We
then wrap up with related work and concluding remarks.

2. BACKGROUND
Viewed from end-to-end, web applications often have client,

application server and backend server components, which
suggests a three tiered architecture [8]. The Client Tier provides
the user interface and consists of browsers that support standards
like HTML, XML and HTTP. The Middle Tier communicates
with the Client tier and executes business logic on an application
server. The Backend Tier provides database support and
connections to other enterprise-wide systems. Our work focuses
on the Client Tier and the portion of the Middle Tier that
communicates with the client. Two important considerations in
this part of the architecture are how user interfaces are defined
and how data are exchanged across the network.

2.1 Defining Interactive Forms
In form-based applications, the ability to collect user input

and to respond with dynamic output is paramount. This demand
for dynamic web content was first met using ad-hoc methods,
such as CGI scripts that generate HTML response pages on the

1 In addition, there are compilers that convert XHTML+XForms

pages into HTML+JavaScript pages [16].

fly. The ascendancy of Java, along with performance and
maintenance concerns about the CGI approach, led to the servlet
programming model [14][19]. In this model, HTML response
pages are generated by Java code running inside a well-defined
container environment. Such servlet code typically combines
strings of HTML markup under program control to generate
HTML response pages. Unfortunately, this means that changes to
web pages often require changes to Java code and, consequently,
that page designers need to be familiar with Java.

JavaServer Pages (JSPs) invert the relationship between the
host and embedded languages: In JSPs, Java code is embedded in
HTML markup. This preserves the basic structure of an HTML
document and allows Java calls to be placed only where dynamic
content is needed. Conveniently, JSPs are transformed into
servlets and then processed. On the other hand, JSPs continue to
mix markup and Java code in the same source artifacts, which
makes these artifacts difficult to understand especially when both
server-executed Java code and client-executed scripting code are
used in the same page.

The JSP lineage represents just one of the many approaches
that have been used to increase the dynamic capabilities of web
applications. For example, Microsoft’s Active Server Pages
(ASPs), like JSPs, mix client-executed markup and server-
executed generative code to create dynamic web pages. Not
surprising, this intermixing can make ASPs difficult to understand
and maintain. To address the issue, ASP.NET [24] adds server
controls, server events, and a server execution model to the
processing of traditional client-side HTML, all of which increase
the skill set needed by developers.

For all but the simplest web applications, web pages
resemble compiled object code rather than human-readable source
code, and one can argue that it is misguided to expect otherwise.
Web pages provide the context for a diverse and constantly
expanding set of technologies to interact, including audio, video,
real-time graphics, interactive forms, and peer-to-peer networking.
Both client-side scripting and server-side generative code allow
web pages to deliver this highly dynamic and varied content. The
argument is rather than thinking of web pages as source code, we
should instead think of web pages a kind of object code that
happens to use displayable characters. The goal, then, would be
to build easy-to-use web programming tools that hide the
complexity of the web pages that get deployed.

There are problems, however, with this idea of treating web
pages as object code that can only be manipulated using high level
programming tools. First, unless programming tools can quickly
support the constantly evolving requirements of dynamic web
applications, we will always be tempted to expose to developers
the lower level client-side scripting and server-side generative
code used in web pages. Unfortunately, it is difficult to provide
even limited programming capabilities to developers without
exposing them to the full complexity of these Turing-complete
languages and their associated data models (e.g., client-side
JavaScript and server-side Java). Second, the use of server-
executed generative code makes it difficult to associate runtime
browser errors with the server-side modules that generated the
failing code. The obstacles here are that browser debug support is
not standardized and that code generation adds another level of
indirection between source and executable.

XForms [11], on the other hand, improves the
comprehensibility of form-based web applications by defining a

216

www.manaraa.com

consistent, declarative structure for dynamic forms. XForms is an
embeddable XML language, which means that it is designed to be
incorporated into other XML languages. In our case, we use
XForms to extend XHTML markup with a more powerful forms
capability. XForms also integrates existing markup technologies
like XPath, XML Schema and Cascading Style Sheets [28].
XForms pages define form data, define UI controls, bind their
controls to their data, interactively respond to events, validate
input data, submit their data, and display dynamic content
returned in responses. Most important, built-in event handling
and validation functions remove the need for scripting in many
XForms pages. Similarly, built-in support for dynamically
changing a form’s appearance removes the need for server-
executed, generative code in most XForms pages.

To a page designer, XForms brings a rich, structured,
declarative forms capability to existing markup languages. For
the purposes of this paper, the details of the XForms markup
language and the processors that implement it in browsers are not
critical. We note that the W3C tracks the adoption of XForms on
their web site [11] and that there are several freely available
XForms implementations, including the formsPlayer™ [29]
processor for Internet Explorer that we use. There are also several
other good XForms references [10][23].

2.2 Exchanging Form Data
After form data are collected in a browser, they need to be

submitted to a server. XForms submissions typically result in the
transmission of a stream of XML data using an HTTP POST
request. What data are sent, where the data are sent, and how the
data are sent is all specified in the XForms markup.

On the server side, the ultimate representation for data is in
the programming language structures in which the server program
is written. In our application builder, this language is Java. To
avoid exposing server programmers directly to the XML used on
client, we generate JavaBeans from XML schemas during
application development. At runtime, we automatically populate
these JavaBeans with the incoming XML data and then pass those
beans to the business logic code written by server programmers.
After the business logic executes, the usual server response is to
display dynamic content in an XForms page. Our runtime system
automatically marshals data from output JavaBeans to XML
instance data in the XForms response page. This XML instance

data reflects the data model, not the desired appearance of the data
in the view.

Wherever possible, our approach to building web
applications is to separate concerns, to reduce the overall number
of technologies required, and to reduce the skill set needed to
develop the various components. On the client side, page
designers create forms declaratively using XML languages. On
the server side, programmers implement their business logic in
Java without using XML technologies. Applications are
developed by defining the control flow separately from
application pages, which allows us to provide visual editors to
support developers in each of these tasks.

3. BUILDING WEB APPLICATIONS
Our web application builder, HopiXForms (HX), provides

visual editors to define the controller and view portions of an
MVC application. In addition, our editors and code generator use
XML schemas to define the application’s model. HX applications
run in a J2EE servlet environment that supports Apache Struts
[8]. Struts is a server-based facility that allows the control flow of
a web application to be separated from the application’s other
concerns. The HX application builder, which we also refer to as
the HX tool, generates the required Struts configuration to
achieve this controller separation.

For illustrative purposes, we refer in this section to a sample
application, called SearchDate, which calculates the day of the
week for a given date. This application is adapted from sample
code provided with the formsPlayer XForms processor.

3.1 HX Tool Architecture
The HX application builder is implemented as a set of plug-

ins for the Eclipse platform [12], which provides a framework for
integrating tool components. Figure 1 shows how the main
components of HX’s architecture reflect the MVC structure of HX
applications. The Controller Editor is used to specify an
application’s control flow; the View Editor is used to specify an
application’s XHTML+XForms pages. As required by XForms,
these pages also specify data models and their schemas. Schema
can be created using existing Eclipse tools, such as an XML
schema editor, that are not shown in the figure.

The Controller and View Editors each have a corresponding
manager component that mediates between the editor and the rest

Figure 1 – HopiXForms (HX) Tool Architecture

217

www.manaraa.com

of the system. Editors receive data from their managers, such as
events that affect the visual display of editable content. Editors
also send data to their managers, such as update notifications that
are of interest to other parts of the system.

One of the key ideas behind our system is that each web
application is actually a family of application versions. This
family consists of a common application and zero or more
specialized versions that are tailored to specific execution targets.
For each target, the controller and view portions of the application
can be independently customized. For example, a specialized
controller can disable control flow into part of an application that
should not run in a certain target environment for security
reasons. Similarly, a specialized view can be customized for
screen size, screen resolution and other display characteristics of a
particular device. Using the Controller and View Editors,
developers can edit the artifacts of an existing specialization or
create new specializations. These actions cause editors to interact
with the Target Repository and the XML Specializer.

 The Target Repository stores definitions of available execu-
tion targets, such as the set of available client devices or a set of
end-user roles. Developers choose the targets for their applica-
tions through a UI mechanism associated with the Controller
Editor, which serves as the focal point of application-wide
information. When a developer selects a target, the Controller
Editor displays the specialized flow for that target. HX control
flows define the transitions between pages and are represented in
XML; specialized flows are computed by the XML Specializer
and communicated to the editor through the Controller Manager.
View specialization works in essentially the same way, the main
difference being that the XML view artifacts are
XHTML+XForms pages.

The final architectural component is the Application
Generator, which creates specialized web applications. For
simplicity, we think of the common application as the base
specialization. Thus, for each specialization target, the associated
control flow and XHTML+XForms pages are taken as input to the
generator and a deployable web application is outputted. These
applications include the Struts artifacts generated from controller
information and the JavaBeans generated from model information
specified in views. The Application Generator supports incre-
mental compilation, consistent with Eclipse platform philosophy.

The HX specialization subsystem consists of the Target
Repository, the XML Specializer, specialization-aware editors,
the code generator, and the specialization data and events that are
exchanged between these components. The design of this
subsystem extends that of IBM’s Multi-Device Authoring
Technology (MDAT) product [3]. We describe HX specialization
in detail in Section 4.

During application development, HX interacts with other
tools through the Eclipse infrastructure. For example, the Java
Development Tools are used by developers to add custom Java
code to skeleton classes created by the Application Generator. In
addition, IBM enhancements to Eclipse [15] provide tools to
create, validate, test and deploy XML artifacts and complete web
applications.

3.2 Struts Overview
Before discussing how developers define the model, view

and controller portions of HX applications, we provide back-
ground on how the Apache Struts [1][8] framework is used in

HX. Architecturally, Struts is layered on top of J2EE servlet
containers and is commonly installed on web servers such as
Apache Tomcat [1]. During development, HX developers specify
their application control flow graphically and HX automatically
generates the necessary Struts artifacts that get deployed with the
application. At runtime, these artifacts configure Struts to manage
the transitions between application pages.

Struts delivers its controller function by providing a standard
servlet class, which like all servlets executes on a web server in
response to URI requests. The Struts servlet uses the configura-
tion generated by HX before deployment to map application URIs
to Struts action classes. In general, an action class is a developer-
supplied class that the Struts framework invokes when a URI
associated with that class is requested. During application
development, HX generates action class skeletons to which
developers can add their business logic. In Section 3.5, we
describe how HX also generates JavaBean classes that hold web
page I/O and how instances of these JavaBean classes are passed
to action classes during request processing.

At runtime, application interaction typically proceeds as
follows: A user enters form data on a web page and then presses a
button, which causes a URI request to be submitted to the server
along with the inputted data. On the server, the Struts servlet gets
control and maps the requested URI to an action class. The action
class is invoked and passed the input data. After the business
logic in the action class executes, it returns a result called an
action-forward. This action-forward is used by Struts to deter-
mine which response page should be sent to the user’s browser.

3.3 Defining the Controller
The HX Controller models the high-level flow of client-

server interaction within an application as a directed graph. This
graph has two types of nodes and three types of edges
(transitions). A page node represents an XForms page, which
executes on the client. A branch node represents a decision point,
which corresponds to a Struts action class that executes on the
server. A page-to-branch transition models a request from a
page, which corresponds to an XForms submission element. A
branch-to-page transition models the outcome of the server-side
action, which corresponds to a Struts action-forward that results
in a response page being sent to the client. Similarly, a branch-to-
branch transition models an action-forward that leads to a new
action.

Figure 2 – Controller Editor

Figure 2 shows the control flow of our SearchDate sample
application as visualized in the Controller Editor. The editor
contains a palette for creating the different nodes and edges, and a

218

www.manaraa.com

canvas area in which the flow graph is assembled. The
application contains two pages – input.hx and output.hx. We
use the .hx file extension to identify XHTML+XForms web pages.
The arrow on the left side of the input page icon marks that page
as the initial page of the application. At runtime, after entering
the required data on the input page, a user would press a button to
submit a request to the server. This submission, labeled sub near
the top-left corner of the diagram, causes control and data to pass
to an instance of the computeDay action class that is running on
the server. When this Java code completes executing the
application’s business logic, it returns either success, to cause the
output page to be returned to the client, or failure, to cause the
input page to be re-displayed. The rest of the sample
application’s control flow operates in a similar way.

The Controller Editor encourages a top-down design of web
applications. In addition to defining control flow, developers can
navigate to other design artifacts from the editor. For example,
double-clicking on a page node opens the corresponding page in
the View Editor; double-clicking on a branch node opens the
corresponding action class in the Java Editor. In addition, the
Controller Editor reflects the realization state of the objects
represented by the nodes and edges on the canvas. For example,
if a node represents a page that does not exist in the file system,
then that node is not realized and its icon is grayed out. When a
page file is created it becomes realized and its corresponding icon
is updated automatically. When an unrealized object is double-
clicked, the Controller Editor orchestrates the creation of the node
or edge by launching the appropriate wizard. Also, the editor
decorates nodes and edges that have build problems with error
markers.

This concept of realized and unrealized objects allows a
loose synchronization between the Controller Editor and the
concrete artifacts to which it refers. This approach simplifies
implementation because even though changes in an application
require the exchange of notifications between system components,
the system does not have to guarantee consistency at all stages of
development. Incomplete or inconsistent applications cannot be
deployed, but inconsistencies in an application during develop-
ment are presented as tasks yet to be completed. The Controller
Editor is implemented as an extension of the Web Diagram
Editor, which is part of IBM WebSphere Studio [15]. In addition,
the Controller Editor works with standard Eclipse viewers, such
as the outline viewer and the properties viewer.

3.4 Defining the View
The HX View Editor is used to create the XForms pages that

define an application’s view component. The language supported
by the View Editor is XForms embedded in XHTML. XForms is
designed as a modality-independent and device-independent XML
language; the intent is that the same XForms document can be
rendered on different devices using different interaction
technologies, such as voice or stylus input. Thus, a WYSIWYG
editor is not always the appropriate choice for displaying an
XForms page. Even though our prototype focuses on the PC form
factor using a standard web browser, we wanted to explore some
of the presentation issues raised by the abstract nature of XForms.
The View Editor uses a tree representation to reflect the
hierarchical nature of XML-based web pages. Our editor includes
wizards, context-sensitive menus, and drag-and-drop capabilities
that make tree manipulation easier. When the View Editor is used
in conjunction with a previewer, developers can see a concrete

manifestation of their abstract pages. The editor also provides a
read-only, source code view.

Figure 3 – View Editor

Figure 3 shows the input page of our SearchDate sample
application in the View Editor. The previewer window on the left
reflects the tree displayed in the edit window on the right.
Updates to the tree are reflected in the previewer on saves. The
previewer uses an XForms-enabled browser to display
SearchDate’s input page.

The edit window in Figure 3 also shows the context menu of
the instance element. A key usability feature of our tree-based
editor is the cascading context-sensitive menus that guide
developers as they create page elements. These menus display the
choices allowed by the XHTML+XForms schema when adding a
child or sibling element to a page. The menus are tiered so that
the most common choices are displayed most prominently.

The View Editor also defines wizards that assist developers
as they construct their XForms pages. Creation wizards are
invoked whenever an XForms element is added to a page. These
wizards allow developers to conveniently assign the required or
most commonly used attributes of the newly created element. For
example, when an input control is created, the input wizard
allows developers to associate the control with a model field in
the page. In addition, the wizard creates a label child for the
input control. In addition, edit wizards and the properties viewer
can be used to change the attributes of existing elements.

3.5 Defining the Model
XForms pages typically define their data model using XML

Schema [28]. HopiXForms provides wizards that help developers
associate XML schemas with XForms model elements. During
code generation, these schemas are used as input into an Apache
XMLBeans [27] compiler, which generates the JavaBean classes
that precisely represent in Java the data types specified in the
schemas. These JavaBeans are not used on the client, but instead
are packaged with deployed applications and used at runtime on
the server to buffer XForms page I/O. Several other technologies,
including JAXB [17], Castor [7] and EMF [12], generate
JavaBeans from XML schemas; we chose Apache XMLBeans
because it is mature, powerful and well-supported.

XForms processors running in browsers can automatically
validate user input because of the strong typing provided by XML
schemas. Similarly, the generated JavaBeans that execute on
servers can provide the same level of type checking when bean
values are assigned. This ability to check model data on both the

219

www.manaraa.com

client and server requires no extra effort on the part of HX
developers, but it promotes greater interactivity on the client
interface and more robust server processing.

To complete our story, we need to describe how at runtime
XML data on the client gets into JavaBeans on the server and vice
versa. Figure 4 shows the flow of model data between the client
and server. Starting on the client side, user input is captured by
XForms as XML data. When the user initiates a submission, an
HTTP POST request that contains the XML model data is sent to
the server.2 The HX runtime code on the server intercepts the
incoming request and marshals the XML data into the appropriate
JavaBean instance. The Struts framework then passes this bean to
the developer-written business logic during Struts action class
processing.

When the business logic executes, it can store response data
in an output JavaBean, which can be a different instance or even a
different type than the input JavaBean. When the business logic
completes, Struts sends the appropriate response page to the
client. The HX runtime code intercepts this outgoing response
page and marshals the contents of the output JavaBean into an
XForms model element. Finally, the HTTP response is sent to the
client and the browser’s XForms processor displays the dynamic
content.

The automatic marshalling just described raises two
interesting problems. First, the HX runtime system must
determine the type of JavaBean into which the incoming XML
request data should be marshaled. Second, the system must also
determine precisely where in the XForms response page the
outgoing XML response data should be placed. We now discuss
our solution to these two problems.

Figure 5 shows the part of the input page of our SearchDate
sample application that defines the XForms data model. The type
definitions for the model are specified in the SearchDate.xsd
schema, which is not shown but contains five string fields. These
fields are also enumerated as grandchildren of the instance
element. The action attribute of the submission element specifies
the URL that is invoked to submit the instance data.

HopiXForms uses this model information to (1) generate the
JavaBeans for the SearchDate.xsd schema and (2) indicate what
JavaBean type should be used by the server for input data

2 HTTP GET requests are also supported.

marshaling. The former task is handled using XMLBeans at
application generation time as described above. The latter task
can also be performed statically at generation time. One static
approach is to configure a single input JavaBean type for the
whole web application using initialization parameters in web.xml,
which is the standard configuration file for web applications. A
more flexible static approach configures each submission URL
with its own input JavaBean type using parameters in struts-
config.xml, which is the Struts configuration that specifies
application control flow. HX implements both of these static
approaches.

For even greater flexibility, however, the input JavaBean
type can be determined dynamically when a request is received.
A simple approach requires the addition of a parameter to the
URL specified in the action attribute of the submission element.
This submission-specific parameter specifies the input JavaBean
type. HX automatically adds this parameter to the URL when the
application is generated. This mostly-dynamic approach is
efficient since each request specifies to the server the JavaBean
type it requires and no further calculation is necessary. Most
important, this approach requires no Java knowledge on the part
of the page designer since HX automatically supplies the needed
information. By default, HX uses this approach.

An alternative approach requires the server to inspect the
root element of the incoming XML data and compare it to the root
elements of the JavaBeans generated for the application. This
completely dynamic approach requires unique root elements
across an application’s schemas. This approach, however, incurs
some runtime overhead because it must inspect the XML payload
and calculate the JavaBean type on each request. This approach is
not currently implemented in HX.

The second interesting runtime problem involves marshaling
data from JavaBeans into XForms response pages. Developers
can specify an output JavaBean in the business logic code of their
action classes or they can let the output bean default to be the
same as the input bean. After an action class executes and just
before a response page is sent to the client, the HX runtime
system inspects the response page to determine which instance
within which model element will receive the output data. By
default, the first instance in the first model is chosen. Page
designers can change this default behavior by adding an HX
attribute to other model or instance elements in the page. This
ability to add custom attributes is supported by XForms.

Once the target instance is known, HX determines if the
instance is empty or if it has child elements. If the instance is
empty, the JavaBean’s contents are streamed into the instance in
XML format. If the instance has children, then by performing a
depth-first traversal starting at the instance’s root, HX matches

<xforms:model schema="SearchDate.xsd">
 <xforms:instance>
 <data>
 <month/><day/><year/><dayOfWeek/><msg/>
 </data>
 </xforms:instance>
 <xforms:submission
 action="/hxdate/Common/computeDay.do"
 id="sub" method="post"/>
</xforms:model>

Figure 4 – Runtime Data Marshaling in HX

Business
Logic XForms Model

Output Data

Client-Side Pages

XForms-to-JavaBeans
Data Marshalling

JavaBeans-to-XForms
Data Marshalling

XForms Model
Input Data

Server-Side Java
Processing

Figure 5 – Input Page Model

220

www.manaraa.com

the name of each child element with the corresponding field in the
output JavaBean. Child elements of the instance that don’t have
matching JavaBean fields are not traversed. When the traversal
reaches a leaf child that has a matching JavaBean field, the
contents of that field are written to the child.

This basic name-matching algorithm is flexible in two ways.
The first kind of flexibility is that different JavaBean types can
populate the same XForms page. If tighter control is desired, then
the output JavaBean type can be restricted to the type that
corresponds to the target model element’s schema. The second
kind of flexibility is the way the algorithm supports XML Schema
list types. When the traversal of an instance encounters the first
XML element in a list, the list is replaced by all matching field
elements in the JavaBean.

3.6 Developing HX Applications
Developers begin work on a new HX application by dragging

and dropping page nodes and branch nodes onto the Controller
Editor’s canvas. The connections between these nodes define the
control flow of the application. Whenever the controller
information is saved, the HX incremental builder generates a
skeleton Struts action class for each new branch node. The source
code of these generated classes indicates where developers should
insert their business logic code. The incremental builder also
generates the Struts artifacts that will execute the application’s
control flow graph at runtime.

At any time, developers can edit the XForms pages that are
represented by page nodes in the application’s controller graph.
XHTML+XForms markup is created using the View Editor.
When a page is saved, the HX incremental builder generates the
JavaBeans that correspond to the XML schemas specified in
XForms model elements. These generated JavaBeans are used at
runtime on the server to (1) pass request input data to action
classes and (2) return response output data from action classes.
HX never deletes code from action classes since they also contain
developer-written code. Action classes, however, are
automatically updated with new JavaBean types when new
schemas are specified in XForms pages. In addition, HX adds the
JavaBean type that should receive a submission element’s request
data to that element’s action attribute.

When all nodes and edges in an application’s control flow
graph are realized, the application is ready to be deployed. The
application can be deployed on any web server that supports J2EE
web applications, version 2.3 or 2.4. An HX application contains
all the web pages, JavaBeans, Struts actions classes, and
configuration files needed to run. By default, HX applications
also contain their own versions of the Struts 1.1 library and the
HX runtime library. HX applications can be accessed from any
XForms-enabled XHTML browser.

4. MULTI-TARGETING
HX supports the customization of applications for multiple

execution targets, such as multiple devices or multiple end-user
roles, through a mechanism we call multi-targeting. Each
customized version of an application can add, remove or modify
pages or control flow based on any criteria important to the
developer. This notion of customization, called specialization,
was first presented in the MDAT system and is further expanded
in HX. In MDAT, developers specify a device-independent
model, view and controller, and then customize the controller and

some aspects of the view to create device-specific applications.
These specialized applications require the translation of their
device-independent views into device-specific markup.

In HX, however, no device-specific translation is needed
since XForms-enabled browsers already tailor XForms pages to
their host devices. The device-independence of XForms means
that (1) HX does not need a view translation engine and (2) HX
does not need detailed device profiles. As a matter of fact, targets
like Administrator, Guest and Motorola V710 are all handled the
same way in HX: they are simply treated as identifiers. In HX,
we can easily generalize the MDAT concept of multi-device
applications to multi-target applications because HX does not
need to understand target semantics. Of course, HX editors and
previewers could use target-specific information to enhance the
development experience, but this information is not architectur-
ally necessary and not part of our prototype implementation.

The HX user interface for specialization is similar to the
existing interface in MDAT.3 A Target Editor associated with the
Controller Editor lists the targets defined to the system by
accessing a Target Repository. These targets can be structured
hierarchically into categories and sub-categories. The Target
Editor provides a way to add new targets to the repository and a
way for developers to assign targets to their applications.
Applications always have a base specialization, known as
common, and zero or more other specialization targets.

When the Controller Editor opens, the common controller is
displayed by default. The Controller Editor provides a drop-down
list to select one of the other targets assigned to the application.
When a new target is selected, the XML Specializer computes the
new target’s controller, which is then displayed in the editor.
Subsequent editing operations apply to the new target’s controller.
The View Editor has a similar selection mechanism for
specializing XForms pages.

HX specialization supports several key features. Most
important, modifications to parent specializations are inherited by
child specializations. Thus, any modification to the common
version applies to all specializations. An important distinction
between HX specialization and XML Schema subtyping is that
HX specialization works on an individual document instance and
XML subtyping works on the class of documents defined by a
schema. Specialization can also change any aspect of view or
controller content, as well as the parts of the model defined in the
XForms pages. Also, since HX controller and view information is
expressed in XML, the same specialization mechanism, the XML
Specializer, can be used for both.

4.1 XML Specializer
The XML Specializer is responsible for constructing a

specialization from a base document and a set of transformations.
Figure 1 shows the Specializer communicating with the Controller
and View Managers. The Specializer has two main functions:

1. For each specialization, maintain a set of deltas that describe
how that specialization differs from its parent in the
specialization hierarchy.

3 HX specialization is not implemented.

221

www.manaraa.com

2. For any given specialization S, compute its complete XML
representation by applying in order all deltas along the path
from the root (common) document to S.

The deltas capture the structural differences between two
XML documents. Each delta corresponds to an atomic change,
such as the insertion or removal of an XML element; the
insertion, removal or modification of a value of an element; or the
insertion, removal or modification of an element’s attribute. The
Specializer requires that all specializable elements be uniquely
identified so that references to those elements remain valid as the
document changes. Typically, any attribute that can appear on all
(or almost all) elements of the document can be used to identify
elements, as long as the attribute’s values are unique within the
document. We call this attribute the id attribute. Each delta
refers to the element it modifies using that element’s id attribute.
An alternative design would be to use the element location (e.g.,
via an XPath expression), but element insertions and deletions
become more difficult to process, and specialization becomes
more fragile under this approach. The XML Specializer is a
general purpose facility that can manage versions of any XML
document that supports an id attribute.

The Controller and View Managers send edit messages and
context information to the XML Specializer. When an editor
opens, its manager notifies the Specializer that it is working on
the common version of a document. When the developer switches
to specialization S, the manager communicates that information.
If the developer adds a new element E to the document, then the
manager sends an edit message of the form (add, E, pid, nsid),
which means “add element E as a child of the element with id pid
such that E’s next sibling is the element with id nsid”. The
Specializer creates a corresponding delta entry in specialization S.
Similarly, there are messages of the form (remove, eid), (change,
eid, string_value) and (change_attribute, eid, attr_name,
attr_value).

When the Specializer receives an edit message it may
perform bookkeeping operations to guarantee the consistency of
existing deltas. For example, if a previously created delta refers to
a sibling element and the current edit operation removes that
element, then the previously created delta needs to have its sibling
reference updated.

The Specializer sends computed XML documents to the
Controller and View Managers upon request. When a developer
wants to edit specialization S, a manager sends a specialize
request to the Specializer that includes the common document and
the specialization name. The Specializer computes the XML
document for S by applying in order the deltas along the path
from the root document to S, and then sends the result back to the
manager. The manager then passes the computed document to the
editor.

4.2 Specializing the Controller and View
The Controller and View Editors are the developer-facing

components through which specialization is defined and seen.
These editors can reflect the effects of specialization by showing
the differences between a specialization and its ancestors in the
specialization hierarchy. These differences can be highlighted by
using different colors or icons to distinguish inherited elements
from elements added, removed or modified in the specialization.
Additionally, the editors can toggle between showing and not
showing the origins of elements in a specialization.

One of the UI challenges of specialization is to present
differences along a complete path in the specialization hierarchy,
from the specialization all the way up to the common document,
in a way that avoids visual clutter and information overload. For
instance, the Controller Editor is able to show differences between
parent and child controller graphs in an understandable way
because of the two dimensional nature of these graphs. The visual
cues that differentiate parent nodes and edges from those of a
child allow developers to clearly see how the two graphs differ. A
scheme for overlaying parent and child graphs is implemented in
the MDAT Controller Editor. In contrast, the View Editor is an
abstract, tree-based editor, which reflects the logical structure of a
page but not its actual presentation. The differences between
parent and child pages in the View Editor are also at the logical
level, which means that developers have to interpret the ultimate
effect these differences will have in actual pages. One approach
to making these differences more directly interpretable is to reflect
them in the previewer.

Another difference between controller and view specializa-
tion is related to their underlying languages. The HX controller
language describes a directed graph and the language is
insensitive to element order. For example, nodes can be added or
removed without regard to other nodes, and the same is true for
edges. This order-insensitivity simplifies bookkeeping since
remove operations do not require sibling references to be updated
in existing deltas. This also means that the XML Specializer can
be optimized for schemas in which order doesn’t matter. On the
other hand, the HX view language is sensitive to the order of
elements since order affects page layout. Thus, the XML
Specializer's job in this case is more involved.

5. RELATED WORK
HX builds upon the ideas of MDAT [3], which is an MVC-

based application builder that creates web and portlet applications
that run on multiple devices. In MDAT, developers create
generic controller and view components that are device-
independent. Whether these generic components run on the client
or on the server, they all share a server-side JavaBeans model. In
MDAT, view pages are defined as JavaServer Pages (JSPs) [14].
Specialization involves translating generic JSPs into JSPs that
contain device-specific markup, such as WML or HTML.
MDAT's view language, the language of its generic pages, is
essentially a mixture of XHTML and XForms UI controls. On the
other hand, HX’s view language embeds the full, standards-
compliant XForms language into XHTML. This XForms-centric
approach uses an XML model in the view and leads to the
separate client-server models described in this paper.

JavaServer Faces (JSF) [22] is a framework for Java-based
web applications in which the application UI is constructed from
reusable server-side components. These components are
transformed into different concrete, client-side UIs through the
use of render kits, which can accommodate both markup-based
and API-based UIs. JSF provides a strongly typed event model
that allows developers to write server-side handlers for events
generated on clients. In addition, JSF specifies server-side model
and controller components for web applications. By contrast, HX
splits function more evenly between client and server. In HX,
XForms processors running on clients provide the event handling,
constraint checking and dynamic display capabilities needed for
typical interactive user interfaces. HX also supports separate
model representations for the client and server environments. JSF

222

www.manaraa.com

is an emerging server-centric technology that relies on
programming tools to insulate developers from the underlying
complexities of the code it generates.

In his quest to teach web application programming, A. Lee
notes that a chief reason why there are few advanced university
courses on the subject is because of the “incredible range of
different Web technologies each of which is constantly changing.”
[21] HX is one of many proposals that address this issue of
complexity. In another proposal, Kojarski and Lorenz [20]
identify two sources of complexity in web programming: intra-
crosscutting is the tangling of application functionality,
presentation and control concerns; and inter-crosscutting is the
scattering of fragments of closely related code among application
pages. To address these problems, the authors present WebJinn,
an MVC-based tool for building web applications. Like HX, the
MVC design pattern is used to alleviate intra-crosscutting.
WebJinn, however, uses an aspect-oriented approach to address
inter-crosscutting, while HX uses code generation to mitigate the
problem of scattered model information. Another tool, the
Wizard framework [26], also provides an MVC approach for fast
prototyping form-based web applications. Unlike HX, this tool
only generates the skeletons of web pages.

The use of XForms in web applications is gaining
acceptance. Trewin, Zimmermann and Vanderheiden [25] com-
pare XForms favorably to three other abstract UI specification
languages in terms of applicability to any target, delivery context,
personalization, extensibility and simplicity. Barton et al. [4] use
XForms as a means to communicate data between web servers and
sensor-enabled client devices, such as wireless digital cameras and
PDAs. Form fields can be filled in directly with sensor data as
well as with manually entered input. HX can be used to build
such applications.

6. FUTURE WORK
In addition to completing our specialization subsystem and

experimenting with several real-world applications, there are
several avenues for future research. First, we would like to extend
HX to support other modalities, such as voice or handwriting.
XForms is modality-independent, but the technologies and
architectures necessary to build non-graphical XForms applica-
tions are not well established. Second, we are exploring
enhancements to our View Editor that include different ways of
visualizing the model-view connections in a page; the tight
integration of XPath, XML Schema and CSS editors; and support
for defining XForms functions, events and actions. In addition,
we would like to integrate a graphical page editor into HX to
support layout editing on different form factors. Finally, we
would like to enhance server-side validation by automatically
running XForms constraint checking on the server when
submissions are made. This means that both schema validation
and XForms validation could run on both the client and server
platforms without any extra work on the part of programmers.
Client-side validation enhances the user experience; server-side
validation makes applications more robust in the presences of ill-
behaved clients. One implementation approach is to run an
XForms processor on the server and correctly associated incoming
XForms model data with the source page from which it
originated.

7. CONCLUSION
The motivation for the work described in this paper is to

reduce the complexity of form-based, web applications. Our
approach is to separate concerns during web application
development and to reduce the number of technologies that a
developer must understand to create these applications. We
decompose web applications into their constituent parts by
placing view function on the client, controller function on the
server, and model function on both client and server. These two
model parts use representations that are natural for their respective
environments and that are automatically synchronized by our
runtime system. The net result is that our web pages are devoid of
most of the client-side scripting and server-side generative code
that we see in many applications. Typically, our web pages
contain only declarative XHTML+XForms markup, which means
that they avoid the complexity of mixing multiple programming
languages with their different process models. This simplification
is possible because XForms-enabled browsers provide the
interactive and dynamic presentation capabilities required by
today’s web applications.

Our application builder provides visual editors that reflect
the MVC structure of the web applications that we generate. This
structure clearly defines the different skill sets needed to build an
application: Web page developers need to understand declarative
markup technology such as XHTML and XForms; business logic
programmers need to understand Java and basic J2EE servlet
programming. Instead of adding more software layers to the
runtime stack, we try to recapture some of the simplicity of the
early web by returning to declarative web pages and by solving
the problem of marshalling dynamic content between client and
server.

8. ACKNOWLEDGMENTS
We thank John Barton, Norman Cohen, Susan Spraragen and

Bill Trautman for their invaluable comments and considerable
effort in editing this paper. We also thank the anonymous
reviewers for their insights and suggestions.

9. REFERENCES
[1] Apache Software Foundation. http://www.apache.org.

[2] Axelsson, J., Epperson, B., Ishikawa, M., McCarron, S.,
Navarro, A. and Pemberton, S. XHTML 2.0, World-Wide
Web Consortium, (Working Draft 22) July 2004.

[3] Banavar, G. et al. An Authoring Technology for Multi-
Device Web Applications, IEEE Pervasive Computing, vol.
3, no. 3, July/September 2004.

[4] Barton, J., Kindberg, T., Dai, H., Priyantha, N. and
Al-bin-ali, F. Sensor-Enhanced Mobile Web Clients: An
XForms Approach. Proceedings of the Twelfth International
Conference on World Wide Web (WWW03), Budapest,
2003.

[5] Berners-Lee, T., and Connolly, D. Hypertext Markup
Language (HTML), Internet Engineering Task Force, June
1993. http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt

[6] Berners-Lee, T. and Connolly, D. Hypertext Markup
Language – 2.0, RFC 1866, Internet Engineering Task
Force, November 1995. http://www.ietf.org/rfc/rfc1866.txt

[7] Castor home page. http://www.castor.org

223

www.manaraa.com

[8] Cavaness, C. Programming Jakarta Struts, O’Reilly and
Associates, 2003.

[9] DataMovil by SATEC S.A., http://www.datamovil.info.

[10] Dubinko, M. XForms Essentials. O’Reilly and Associates,
2003.

[11] Dubinko, M., Klotz, L., Merrick, R. and Raman, T. XForms
1.0, World-Wide Web Consortium, (Recommendation)
October 2003. http://www.w3.org/MarkUp/Forms.

[12] Eclipse tool platform. http://www.eclipse.org.

[13] ECMA International, Standard ECMA-262, ECMAScript
Language Specification, 3rd edition, http://www.ecma-
international.org/publications/standards/Ecma-262.htm.

[14] Falkner, J. and Jones, K. Servlets and JavaServer Pages.
Pearson Education, Inc., 2004.

[15] IBM Websphere Studio Application Developer.
www.ibm.com.

[16] IBM XML Forms Package, April 9, 2003, IBM Alphaworks,
http://www.alphaworks.ibm.com/tech/xmlforms.

[17] Java Architecture for XML Binding (JAXB).
http://java.sun.com/xml/jaxb.

[18] Java Community Process site for Java standards such as
Enterprise JavaBeans, Service Data Objects, etc.,
http://jcp.org.

[19] Java 2 Platform, Enterprise Edition (J2EE),
http://java.sun.com/j2ee.

[20] Kojarski, S. and Lorenz, D. Domain Driven Web
Development with WebJinn. Companion of the 18th Annual
ACM SIGPLAN conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), Anaheim, California, 2003.

[21] Lee, A. A Manageable Web Software Architecture:
Searching for Simplicity. Proceedings of the 34th SIGCSE
Technical Symposium on Computer Science Education,
Reno, Nevada, 2003.

[22] McClanahan, C., Burns, E. and Kitain, R. JavaServer Faces
Specification, v1.1, rev. 01. Sun Microsystems, May 2004.
http://java.sun.com/j2ee/javaserverfaces.

[23] Raman, T. V. XForms, XML Powered Web Forms.
Addison-Wesley, 2004.

[24] Thai, T. and Lam, H. .NET Framework Essentials. O’Reilly
and Associates, 2002.

[25] Trewin, S., Zimmermann, G. and Vanderheiden, G. Abstract
User Interface Representations: How well do they support
universal access? Proceedings of the 2003 Conference on
Universal Usability, Vancouver, 2003.

[26] Turau, V. A Framework for Automatic Generation of Web-
Based Data Entry Applications Based on XML. Proceedings
of the 2002 ACM Symposium on Applied Computing,
Madrid, 2002.

[27] XMLBeans home page. http://xmlbeans.apache.org

[28] World-Wide Web Consortium standards including XForms,
XML Schema, XPath and Cascading Style Sheets.
http://www.w3.org.

[29] x-port Ltd, home page for the formsPlayer XForms
processor. http://www.formsplayer.com

224

